Las baterías termofotovoltaicas podrían almacenar grandes cantidades de electricidad renovable
Investigadores del Instituto de Energía Solar, de la Universidad Politécnica de Madrid, han desarrollado un sistema que permite almacenar grandes cantidades de electricidad renovable y suministrar calor y electricidad bajo demanda, lo que podría reducir nuestra dependencia de los combustibles fósiles
21.03.2022
Los precios del gas natural están disparados por todo el mundo y han llevado a precios récord de electricidad y calefacción. Por otro lado, el auge de las fuentes de energía renovables, como la solar y la eólica, está creando un nuevo paradigma en el sector energético: cada vez se produce más electricidad cuando no hay demanda. Y esto está ocasionando que gran parte de esta electricidad se pierda. En esta situación, puede parecer lógico aprovechar esa electricidad renovable excedente para producir calor y electricidad cuando sea necesario. Sin embargo, nos enfrentamos a un problema tecnológico: carecemos de un sistema que sea capaz de almacenar y producir esta energía bajo demanda de forma económica.
Vista del interior de una batería termofotovoltaica de calor latente desarrollada en el Proyecto AMADEUS y disponible en el IES-UPM. Fuente: IES-UPM
Investigadores del Instituto de Energía Solar de la Universidad Politécnica de Madrid (IES-UPM) han encontrado una posible solución: un sistema que podría almacenar grandes cantidades de electricidad renovable durante largos periodos de tiempo de forma muy económica y proporcionar calor y electricidad bajo demanda.
El sistema, descrito en un artículo publicado recientemente en Joule, utiliza la generación excedente a partir de energías renovables intermitentes, como la solar o la eólica, para fundir metales baratos, como el silicio o las aleaciones de ferrosilicio, a temperaturas superiores a los 1.000ºC. Las aleaciones de silicio pueden almacenar grandes cantidades de energía durante su proceso de fusión. Este tipo de energía se llama “calor latente”. Por ejemplo, un litro de silicio almacena más de 1 kWh de energía en forma de calor latente, que es precisamente la cantidad de energía que contiene un litro de hidrógeno presurizado a 500 bar. Sin embargo, a diferencia del hidrógeno, el silicio se puede almacenar a presión atmosférica, lo que hace que el sistema sea potencialmente más económico y seguro.
Una clave del sistema se refiere a la forma en que el calor almacenado se convierte en electricidad. Cuando el silicio se funde a más de 1000ºC brilla como el sol. Por lo tanto, es posible volver a convertir el calor irradiado en electricidad utilizando células fotovoltaicas. Los llamados generadores termofotovoltaicos son como instalaciones fotovoltaicas en miniatura que pueden producir hasta 100 veces más potencia que una planta de energía solar convencional. En otras palabras: si un metro cuadrado de panel solar produce 200 W, un metro cuadrado de panel termofotovoltaico produce 20 kW. Y no solo la potencia, sino que la eficiencia de conversión también es mayor. La eficiencia de las células termofotovoltaicas oscila entre el 30 y el 40% en función de la temperatura de la fuente de calor. Comparativamente, los paneles solares fotovoltaicos comerciales tienen eficiencias de entre el 15% y el 20%. El uso de generadores termofotovoltaicos, en lugar de motores térmicos convencionales (como los ciclos Stirling, Brayton o Rankine), evita el uso de partes móviles, fluidos o intercambiadores de calor complejos. De esta forma, todo el sistema puede hacerse económico, compacto y silencioso.
Según el estudio, las baterías termofotovoltaicas de calor latente podrían almacenar grandes cantidades de excedentes de electricidad renovable. “Gran parte de esta electricidad se producirá cuando no haya demanda, por lo que se venderá muy barata en el mercado eléctrico”, señala Alejandro Datas, investigador del IES-UPM que lidera el proyecto. “Por tanto, es fundamental almacenar esta electricidad en un sistema muy barato, ya que no tendría sentido almacenar algo tan barato en una caja muy cara. Por eso, almacenar electricidad excedente en forma de calor tiene mucho sentido, ya que es una de las formas más baratas de almacenar energía”, continúa el investigador. En particular, las aleaciones de silicio y ferrosilicio pueden almacenar energía a un costo de menos de 4 € por kWh, que es 100 veces más barato que las actuales baterías estacionarias de iones de litio. El coste total será mayor tras incorporar el contenedor y el aislamiento térmico. Pero, según el estudio, sería posible alcanzar costes en torno a los 10 € por kWh si el sistema es suficientemente grande, típicamente más de 10 MWh, ya que el coste del aislamiento térmico sería una pequeña fracción del coste total del sistema.
El hecho de que solo una fracción del calor almacenado se convierta nuevamente en electricidad no es necesariamente un problema. Si el sistema es lo suficientemente barato, bastaría con recuperar solo el 30-40% de la energía en forma de electricidad para que sean preferibles a otras tecnologías más caras, como las baterías de iones de litio. Además, el 60-70% restante del calor que no se convierte en electricidad puede entregarse directamente a edificios, fábricas o ciudades, lo que reduciría su consumo de gas natural. El calor representa más del 50% de la demanda mundial de energía y el 40% de las emisiones mundiales de CO2. De este modo, el almacenamiento de energía eólica o fotovoltaica en baterías termofotovoltaicas de calor latente no solo permitiría un ahorro sustancial de costes, sino que también satisfaría parte de esta gran demanda de calor a través de fuentes renovables. Por tanto, “desarrollar este tipo de sistemas puede ser clave para reducir nuestra dependencia de los combustibles fósiles, no solo en el sector eléctrico, sino también en el térmico”, concluye Datas.
El primer prototipo a escala de laboratorio del sistema que se ha fabricado en el marco de un proyecto europeo (AMADEUS) ya está disponible en el IES-UPM, y en dicho estudio se han publicado los primeros resultados experimentales. Esta es la culminación de más de 10 años de investigación en el IES-UPM. Sin embargo, la tecnología todavía necesita mucha inversión antes de que pueda llegar al mercado. Por ejemplo, el prototipo de laboratorio actual tiene menos de 1 kWh de capacidad de almacenamiento, pero se necesitan capacidades de almacenamiento de energía de más de 10 MWh para que esta tecnología sea rentable. Por lo tanto, el próximo desafío es escalar la tecnología y probar su viabilidad a gran escala. Para ello, los investigadores del IES-UPM ya están formando el equipo que lo hará posible.
almacenar energía en silicio fundido
La posibilidad de almacenar energía en silicio fundido como base para crear nuevos dispositivos que permitan acumular energía de forma más compacta y eficiente es algo de lo que se ha hablado mucho en las últimas semanas, a raíz de un trabajo publicado por el Massachusets Institute of Technology de Estados Unidos (MIT). Sin embargo, la investigación desarrollada en este importante centro americano no es la única que está en marcha en este sentido. El proyecto europeo Amadeus, coordinado por investigadores del Instituto de Energía Solar de la Universidad Politécnica de Madrid (UPM), lidera los estudios europeos en este campo.
A diferencia del concepto desarrollado por el MIT, en Amadeus se almacena energía en el cambio de fase de sólido a líquido del silicio. De ese modo, los investigadores aprovechan el elevado calor latente de cambio de fase del silicio, que supera en 10 veces la capacidad de almacenamiento de las sales fundidas. “En nuestro concepto el silicio no se mueve, y cambia de estado sólido a líquido en un único tanque, por lo que siempre se encuentra a temperaturas cercanas a la del punto de fusión (1414ºC)”, explica Alejandro Datas, investigador del Instituto de Energía Solar de la UPM y coordinador científico del proyecto.
El almacenamiento directo de energía solar en plantas termosolares, o la integración del almacenamiento eléctrico y la cogeneración en domicilios y distritos son sólo algunas de las aplicaciones que podrían tener los nuevos dispositivos resultantes del proyecto Amadeus, que cuenta con financiación de la convocatoria Future Emnerging Technologies (FET) del programa Horizonte 2020 de la Comisión Europea y que está ya en su segundo año de andadura, de los tres inicialmente previstos para su duración.
Almacenamiento de energía a alta temperatura: una solución económica | Técnicas de Ingeniería
Convertirse en verdaderas soluciones de sustitución a gran escala, fuentes de energía intermitentes
Con un presupuesto de 3,3 millones de euros Amadeus investiga nuevos materiales y dispositivos que permitan almacenar energía a temperaturas en el rango de los 1000 y 2000 ºC. De esta forma, se pretende romper con la barrera de los 600ºC, raramente superada por los sistemas actuales empleados en centrales termosolares.
Para conseguirlo, los expertos están trabajando con distintos aleados metálicos de silicio y boro, que funden a temperaturas superiores a los 1.385 ºC y que permitirán almacenar entre 2 y 4 MJ/kg, “un orden de magnitud superior a la de las sales empleadas actualmente”, añade el investigador de la UPM. Además, se están estudiando los materiales necesarios para contener estos metales fundidos durante largos periodos de tiempo y lograr un buen aislamiento térmico, así como los dispositivos para lograr una conversión eficiente del calor almacenado en electricidad.
El proyecto investigará un nuevo concepto (patentado por investigadores de la UPM) que combina los efectos termiónico y fotovoltaico para lograr la conversión directa del calor en electricidad. A diferencia de las máquinas térmicas convencionales, este sistema no requiere contacto físico con la fuente térmica, ya que se basa en la emisión directa de electrones (efecto termiónico) y de fotones (efecto termofotovoltaico).
Además de la Universidad Politécnica de Madrid (UPM), en el proyecto Amadeus colaboran otros seis socios de cinco países europeos, con experiencia en campos tan diversos como la metalurgia, el aislamiento térmico, la dinámica de fluidos y dispositivos semiconductores.
La energía solar y eólica alimentarían 80% electricidad mundial